

Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Canada

Crop Rotations: Economics & Benefits

Nityananda Khanal*, Newton Lupwayi, Rahman Azooz, Noabur Rahman, Jennifer Otani, Calvin Yoder and Talon Gauthier

> *Agriculture and Agri-Food Canada Beaverlodge Research Farm Beaverlodge, Alberta TOH 0C0 Email: nityananda.khanal@canada.ca

Presentation coverage

Review of literature

- Most studies in the Peace region
- Some studies in western Canada
- Few studies in the USA

Results of current study at Beaverlodge

Agro-ecological merits of perennial crops

Agro-ecological properties	Study context	Reference
Carbon sequestration:		
Perennial grassland had 3-7 times greater root biomass & 2 times greater root length than in cropland.	Long term and conversion studies in North Kansas, USA	Dupont et al (2014)
Diverse perennial grassland had 500 - 600% more soil C & N than monoculture.	Cedar Creek Ecosystem Science Reserve, Minnesota, USA	Fornara et al (2009)

Agro-ecological merits of perennial crops

Agro-ecological properties	Study context	Reference
Soil conservation:		
The rotation that included fescue seed crop had a cumulative reduction of run-off and soil losses by over 35% and 400%.	A six-year rotations with annual crops & red fescue seed crop in Fort St. John, BC	Van Vliet & Hall (1991)
Soil structural improvement:		
Integration of grasses in the annual cereal rotation had positive effects on the development of discrete granular structures in the Luvisol.	Breton, 100 km southwest of Edmonton, AB	Pawluk (1980)
Forage based sequences had greater soil aggregate stability than the annual crop sequences.	Peace region (Beaverlodge), AB	Broersma et al (1997)

Canada

Agro-ecological merits of perennial crops

Agro-ecological properties	Study context	Reference
N fixation & soil enrichment:		
Annually, alsike & red clover fixed nitrogen in the range of 21–143 kg ha ⁻¹ , & 15–77 kg ha ⁻¹ respectively.	Peace region (Beaverlodge), AB	Rice (1980)
Continuous leguminous sequence (1968-1984) of red clover had 10-fold higher N mineralization rate than the non-legumes crop sequences.	Peace region (Beaverlodge), AB	Broersma et al (1996)

Agro-ecological merits of crop rotations

Comparative benefits	Study context	Reference
Suppression of crop pests:		
Canola grown after two break crops in rotation had 54% less incidence of blackleg disease & 6% less damage by root maggot.	Multi-location study at Beaverlodge, Lacombe Edmonton, AB; Melfort, SK; Brandon, MB	Harker et al (2015)
Canola preceded by two break crops had less incidence of brown girdling root-rot and concomitantly higher seed yield than the unbroken sequence of canola.	Peace region (Beaverlodge), AB	Soon et al (2005)

Agro-economic benefits of crop rotations

Yield & economic advantages	Study context	Reference
Canola grown after two break crops in rotation vielded 22%	Multi-location study at Beaverlodge.	Harker et al (2015)
higher compared with continuous canola & wheat-canola-canola rotation.	Lacombe Edmonton, AB; Melfort, SK; Brandon, MB	(2010)
Canola & wheat yield advantages due to two break crops of pea, barley or flax were 19.4% and 7.2% over the unbroken sequence of canola & wheat, respectively.	Peace region (Donnelly), AB	Gill (2018)
Replacement of a wheat by lentil & dry bean from canola-wheat- wheat-wheat sequence resulted in higher economic returns accompanied with reduced environmental effects.	Data from western Canada, US & European Ecoinvent v2.0 database	MacWilliam et al. (2014)
	Canada	a

Agriculture and

Agriculture et Agri-Food Canada Adroalimentaire Canada

On-going study at Beaverlodge

Research Questions

- Can forage seed crops be profitably integrated in the annual cropping systems?
- Can forage seed crops improve soil health?

An ongoing cropping sequence study (2013-2020)

Split-plot field experiment

Agriculture and

Food Canada

Main plots: 8 cropping sequences

C-C-C-C-P-Mb-Mb-Mb-C Cf-Cf-Cf-C-P-Cf-Cf-Cf-C Rc-Rc-W-C-Rc/W-Rc-W-C-W Ac-Ac-W-C-Ac/W-Ac-W-C-W *in*Rc-Rc-W-C-Rc/W-RC-C-W-C

inAc-Ac-W-C-Ac/W-Ac-Cf-Cf-Cf

<mark>P-B-W-C</mark>-P-W-C</mark>-P-W

<mark>W-C-W-C</mark>-W-C

Sub plots: 3 levels of N
0, 45 & 90 kg N ha-1

C = canola

P = pea

Mb = meadow bromegrass

Cf = creeping red fescue

Ac = alsike clover

Rc = red clover

W = wheat

in = inoculated with biofertilizer

Four-year crop sequences: Economic analysis in two scenarios

Scenario 1: average price of forage seed & low price of annual grains

Scenario 2: average price of forage seed & average price of annual grains

Canola equivalent yield

= (Noncanola price ÷ Canola price) × Noncanola yield

Gross margin

= Total revenue – Variable costs differning between treatments

Agri-Food Canada

4-year crop sequences: Canola equivalent yield

Scenario 1: average price of forage seed & low price of annual grains

Based on cumulative canola equivalent yield (CEY) of 4-year crop sequences with 90 kg N ha⁻¹:

- creeping red fescue followed by canola generated CEY of 13.95 t ha⁻¹.
- wheat-canola rotation generated CEY of 10.07 t ha⁻¹.
- continuous canola cropping provided a gross margin of 9.5 t ha⁻¹.

Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Canada

4-year crop sequences: Gross margin analysis Scenario 1: average price of forage seed & low price of annual grains

Based on cumulative gross margin analysis of the 4-year crop sequences with 90 kg N ha⁻¹:

- creeping red fescue followed by canola provided gross margin of \$3416 ha⁻¹.
- wheat-canola rotation provided gross margin of \$2052 ha⁻¹.
- continuous canola cropping provided a gross margin of \$1907 ha⁻¹.

Agri-Food Canada

4-year crop sequences: Canola equivalent yield

Scenario 2: average price of forage seed & average price of annual grains

Based on cumulative canola equivalent yield (CEY) of 4-year crop sequences with 90 kg N ha⁻¹:

- creeping red fescue followed by canola generated CEY of 12.12 t ha⁻¹.
- wheat-canola rotation generated CEY of 9.07 t ha⁻¹.
- continuous canola cropping provided a gross margin of 9.5 t ha⁻¹.

Agriculture and

Agri-Food Canada

4-year crop sequences: Gross margin analysis

Scenario 2: average price of forage seed & average price of annual grains

Based on cumulative gross margin analysis of the 4-year crop sequences with 90 kg N ha⁻¹:

- creeping red fescue followed by canola provided gross margin of \$3518 ha⁻¹.
- wheat-canola rotation provided gross margin of \$2923 ha⁻¹.
- continuous canola cropping provided a gross margin of \$2706 ha⁻¹.

Some soil health indicators after 5 crops under different cropping sequences

C = canola; P = pea; CF = creeping red fescue; RC = red clover; W

W = wheat;

Mb = meadow bromegrass; AC = alsike clover; eat; in = inoculated with bio-fertilizer Agriculture and Agriculture et Agri-Food Canada Agroallmentaire Canada

0-0-0-0-0

Soil aggregate diameters & size distribution in top 0-15 cm layer, after first five crops in different crop sequences.

Soil aggregate (MWD)

Soil aggregate size distribution at top 0-15 cm layer:

- Aggr. size (0.25-8.0 mm)
- Aggr. size (<0.25 mm)

(Mb-Mb-Mb-C) - (GF-CF-C-P) - (CF-CF-CF-C) - (CF-CF-CF-W) - (CF-CF-W) - (RC-W-C-W) - (RC-W-C-W) - (RC-W-C-W) - (RC-C-W) - (RC-C-W-C) - (RC-C-W-C) - (RC-C-M) - (RC-CF-CF) - (W-C-P-W) - (W-

W-C-W-C-W-

(C-W-C-W)

Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Canada

Soil active C (permanganate-oxidizable C), microbial biomass C and activity of B-glucosidase enzyme involved in C-cycling

C = canola;P = pea;Mb = meadow bromegrass;CF = creeping red fescue;AC = alsike clover;RC = red clover;W = wheat;in = inoculated with bio-fertilizer

Agriculture and Agri-Food Canada

B-N- acetyl-glucosaminidase (pmol MUF g⁻¹ soil h⁻¹)
Acid phophomonoesterase (pmol MUF g⁻¹ soil h⁻¹)
Arylsulphatase (mg p-nitrophenyl kg⁻¹ soil h⁻¹)

Canada

Conclusions

- Changes in agroecological properties take long time horizon
- Forage seed crops can serve as profitable break crops in the annual cropping sequences with beneficial effects on soil properties
- Cropping systems with forage seed crops require less input, hence lower cost of production
- The prices of forage seeds & food grains are major determinants of the profitability (e.g. the case of red clover & barley)
- Prudent choice of cropping sequences can help avert both production risks posed by biotic & abiotic factors, & price risks due to fluctuating market.

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

Acknowledgements

Funding:

Agriculture and Agri-Food Canada (AAFC) Peace Region Forage Seed Association (PRFSA)

Collaboration:

Newton Lupwayi, AAFC - Lethbridge Calvin Yoder, Alberta Agriculture and Forestry Talon Gauthier, PRFSA

Expertise and Technical Support:

Jennifer Otani, AAFC – Beaverlodge Henry Klein-Gebbinck, AAFC – Beaverlodge Noabur Rahman, AAFC - Beaverlodge Rahman Azooz, AAFC – Beaverlodge Pat Gansevles, AAFC – Beaverlodge Mike Leighton, AAFC – Beaverlodge Nathan Logan, AAFC – Beaverlodge Summer Students

Thank you !

